Showing posts with label metamaterials. Show all posts
Showing posts with label metamaterials. Show all posts
Tuesday, July 8, 2014
Harnessing the speed of light | MIT News Office
Harnessing the speed of light | MIT News Office: One of Fang’s key discoveries is finding how to beat the diffraction of light. Since light and sound waves tend to spread out when blocked by an obstacle, images and communication signals can become blurry and muddled. In his lab, Fang discovered that by breaking the diffraction barrier, light signals can be sent at 10 times greater capacity. This has allowed him to produce results on the sub-nanometer scale, with light as a machining tool providing “a new degree of precision,” he says.
Thursday, July 3, 2014
Elastic Cloaking Material Makes Objects “Unfeelable” - Scientific American
Elastic Cloaking Material Makes Objects “Unfeelable” - Scientific American: The unfeelability cloak is a so-called pentamode metamaterial, an artificial structure that, despite being a solid, can behave like a fluid; although difficult to compress, its shape is otherwise easy to shift. The specific material the researchers devised is a three-dimensional hexagonal lattice reminiscent of a honeycomb, with the rods making up this lattice wider at their middles than at their ends...
The unfeelability cloak does have limits. For instance, the dimensions of the cloak's components have to be designed to specifically match whatever the cloak is hiding. Furthermore, although unfeelability cloaks can hide objects from some pokes and prods, it cannot protect against all of them—one can push on a cloak strongly enough to break it and feel the object it hides.
The unfeelability cloak does have limits. For instance, the dimensions of the cloak's components have to be designed to specifically match whatever the cloak is hiding. Furthermore, although unfeelability cloaks can hide objects from some pokes and prods, it cannot protect against all of them—one can push on a cloak strongly enough to break it and feel the object it hides.
Tuesday, July 1, 2014
New metamaterial gives light a one-way ticket
New metamaterial gives light a one-way ticket: ...The silver-glass structure is an example of a "hyperbolic" metamaterial, which treats light differently depending on which direction the waves are traveling...
While the second set of grates let light escape the material, their spacing was slightly different from that of the first grates. As a result, the reverse-direction grates bent incoming light either too much or not enough to propagate inside the silver-glass layers. Testing their structures, the researchers found that around 30 times more light passed through in the forward direction than in reverse, a contrast larger than any other achieved thus far with visible light.
Combining materials that could be made using existing methods was the key to achieving one-way transmission of visible light, Lezec says. Without the intervening silver-and-glass blocks, the grates would have needed to be fabricated and aligned more precisely than is possible with current techniques. "This three-step process actually relaxes the fabrication constraints," Lezec says.
While the second set of grates let light escape the material, their spacing was slightly different from that of the first grates. As a result, the reverse-direction grates bent incoming light either too much or not enough to propagate inside the silver-glass layers. Testing their structures, the researchers found that around 30 times more light passed through in the forward direction than in reverse, a contrast larger than any other achieved thus far with visible light.
Combining materials that could be made using existing methods was the key to achieving one-way transmission of visible light, Lezec says. Without the intervening silver-and-glass blocks, the grates would have needed to be fabricated and aligned more precisely than is possible with current techniques. "This three-step process actually relaxes the fabrication constraints," Lezec says.
Sunday, June 29, 2014
Single-pixel 'multiplex' captures elusive terahertz images
Single-pixel 'multiplex' captures elusive terahertz images: The team reports it developed a "multiplex" tunable spatial light modulator (SLM) that uses a series of filter-like "masks" to retrieve multiple samples of a terahertz (THz) scene, which are reassembled by a single-pixel detector...
Data obtained from these encoded measurements are used to computationally reconstruct the images as much as six times faster than traditional raster scan THz devices, the team reports.
Data obtained from these encoded measurements are used to computationally reconstruct the images as much as six times faster than traditional raster scan THz devices, the team reports.
Friday, June 20, 2014
Elastic invisibility cloak hides materials from touch sense
Elastic invisibility cloak hides materials from touch sense: The metamaterial is a crystalline material structured with sub-micrometer accuracy. It consists of needle-shaped cones, whose tips meet. The size of the contact points is calculated precisely to reach the mechanical properties desired. In this way, a structure results, through which a finger or a measurement instrument cannot feel its way.
In the invisibility cloak produced, a hard cylinder is inserted into the bottom layer. Any objects to be hidden can be put into its cavity. If a light foam or many layers of cotton would be placed above the hard cylinder, the cylinder would be more difficult to touch, but could still be felt as a form. The metamaterial structure directs the forces of the touching finger such that the cylinder is hidden completely...
In the invisibility cloak produced, a hard cylinder is inserted into the bottom layer. Any objects to be hidden can be put into its cavity. If a light foam or many layers of cotton would be placed above the hard cylinder, the cylinder would be more difficult to touch, but could still be felt as a form. The metamaterial structure directs the forces of the touching finger such that the cylinder is hidden completely...
Thursday, June 19, 2014
New ultrastiff, ultralight material developed | MIT News Office
New ultrastiff, ultralight material developed | MIT News Office: The actual production of such materials is made possible by a high-precision 3-D printing process called projection microstereolithography...
“We found that for a material as light and sparse as aerogel [a kind of glass foam], we see a mechanical stiffness that’s comparable to that of solid rubber, and 400 times stronger than a counterpart of similar density. Such samples can easily withstand a load of more than 160,000 times their own weight,” says Fang...
“We found that for a material as light and sparse as aerogel [a kind of glass foam], we see a mechanical stiffness that’s comparable to that of solid rubber, and 400 times stronger than a counterpart of similar density. Such samples can easily withstand a load of more than 160,000 times their own weight,” says Fang...
Friday, May 30, 2014
Researchers design a new structure that absorbs all sound
Researchers design a new structure that absorbs all sound: In their work, the researchers have demonstrated how the designed structure achieves extraordinary sound absorption using an apparently contradictory strategy: the sound attenuation increases when the quantity of absorbent material is reduced. This way, a totally reflective surface becomes a perfect absorbent despite the fact that, for the most part, there is no material that absorbs sound.
Thursday, May 15, 2014
‘Hyperbolic metamaterials’ closer to reality | KurzweilAI
‘Hyperbolic metamaterials’ closer to reality | KurzweilAI: The hyperbolic metamaterial behaves as a metal when light is passing through it in one direction and like a dielectric in the perpendicular direction. This “extreme anisotropy” leads to “hyperbolic dispersion” of light and the ability to extract many more photons from devices than otherwise possible, resulting in high performance...
The list of possible applications for metamaterials includes a “planar hyperlens” that could make optical microscopes 10 times more powerful and able to see objects as small as DNA, advanced sensors, more efficient solar collectors, and quantum computing.
The list of possible applications for metamaterials includes a “planar hyperlens” that could make optical microscopes 10 times more powerful and able to see objects as small as DNA, advanced sensors, more efficient solar collectors, and quantum computing.
Wednesday, May 7, 2014
Fabrication technique brings metamaterial applications a step closer
Fabrication technique brings metamaterial applications a step closer: The second approach is to pattern a sacrificial substrate and then deposit repeated layers onto it. This 'pattern-first' process suffers from its own difficulties, the most important of which is that the total thickness of the final fishnet material is typically limited to tens of nanometers or less...
Zhou and colleagues were able to increase the total thickness of pattern-first fishnet films to around 300 nanometers, allowing five bilayers of film to be deposited and resulting in a strong characteristic resonance and pronounced metamaterial behavior. To achieve this, they adopted a technique called trilayer lift-off, which is commonly used in industry but seldom applied in research laboratories. It involves patterning a sacrificial layer of a photoresist resting on a layer of silicon dioxide under which lies a second photoresist layer...
Zhou and colleagues were able to increase the total thickness of pattern-first fishnet films to around 300 nanometers, allowing five bilayers of film to be deposited and resulting in a strong characteristic resonance and pronounced metamaterial behavior. To achieve this, they adopted a technique called trilayer lift-off, which is commonly used in industry but seldom applied in research laboratories. It involves patterning a sacrificial layer of a photoresist resting on a layer of silicon dioxide under which lies a second photoresist layer...
Genetic algorithm used to design broadband metamaterial | KurzweilAI
Genetic algorithm used to design broadband metamaterial | KurzweilAI: "...this is the first that can cover a super-octave [more than doubling] bandwidth in the infrared spectrum...”
The new metamaterial is actually made of layers on a silicon substrate or base. The first layer is palladium, followed by a polyimide (plastic) layer and a palladium screen layer on top. The screen has elaborate, complicated cutouts — sub-wavelength geometry — that serve to block the various wavelengths. A polyimide layer caps the whole absorber...
This evolved metamaterial can be easily manufactured because it is simply layers of metal or plastic that do not need complex alignment. The clear cap of polyimide serves to protect the screen, but also helps reduce any impedance mismatch that might occur when the wave moves from the air into the device...
The new metamaterial is actually made of layers on a silicon substrate or base. The first layer is palladium, followed by a polyimide (plastic) layer and a palladium screen layer on top. The screen has elaborate, complicated cutouts — sub-wavelength geometry — that serve to block the various wavelengths. A polyimide layer caps the whole absorber...
This evolved metamaterial can be easily manufactured because it is simply layers of metal or plastic that do not need complex alignment. The clear cap of polyimide serves to protect the screen, but also helps reduce any impedance mismatch that might occur when the wave moves from the air into the device...
Monday, April 7, 2014
How to create a large-area visible-light invisibility cloak | KurzweilAI
How to create a large-area visible-light invisibility cloak | KurzweilAI: To create the material, they used a nanotransfer printing technique that creates metal/dielectric composite films. These are stacked in a 3-D architecture to achieve nanoscale patterns for operation in the visible spectral range. Control of electromagnetic resonances over the 3-D space by structural manipulation allows precise control over propagation of light...
...he sample they created covers about 4 square centimeters...
...he sample they created covers about 4 square centimeters...
Tuesday, March 11, 2014
Acoustic Cloaking Device Hides Objects from Sound | Duke Pratt School of Engineering
Acoustic Cloaking Device Hides Objects from Sound | Duke Pratt School of Engineering
The acoustic cloaking device works in all three dimensions, no matter which direction the sound is coming from or where the observer is located...
In the case of the new acoustic cloak, the materials manipulating the behavior of sound waves are simply plastic and air. Once constructed, the device looks like several plastic plates with a repeating pattern of holes poked through them stacked on top of one another to form a sort of pyramid...
The acoustic cloaking device works in all three dimensions, no matter which direction the sound is coming from or where the observer is located...
In the case of the new acoustic cloak, the materials manipulating the behavior of sound waves are simply plastic and air. Once constructed, the device looks like several plastic plates with a repeating pattern of holes poked through them stacked on top of one another to form a sort of pyramid...
Wednesday, March 5, 2014
First step towards 'programmable materials'
First step towards 'programmable materials': The working model used by the researchers consists of a one-meter by one-centimeter aluminum plate that is one millimeter thick. This sheet-metal strip can vibrate at different frequencies. In order to control the wave propagation, ten small aluminum cylinders (7 mm thick, 1 cm high) are attached to the metal. Between the sheet and the cylinders sit piezo discs, which can be stimulated electronically and change their thickness in a flash. This ultimately enables the team headed by project supervisor Andrea Bergamini to control exactly whether and how waves are allowed to propagate in the sheet-metal strip. The aluminum strip thus turns into a so-called adaptive phononic crystal – a material with adaptable properties.
Tuesday, February 25, 2014
Scientists twist sound with metamaterials
Scientists twist sound with metamaterials: ...the team reports a simple design for a device, called an acoustic field rotator, which can twist wavefronts inside it so that they appear to be propagating from another direction...
Another surprise the team discovered was that acoustic and electromagnetic rotators can be designed based on the same principles. In this case, the researchers used anisotropic metamaterials, which possess physical properties that differ along different directions.
Another surprise the team discovered was that acoustic and electromagnetic rotators can be designed based on the same principles. In this case, the researchers used anisotropic metamaterials, which possess physical properties that differ along different directions.
Thursday, January 9, 2014
First light-bending calculator designed with metamaterials - physics-math - 09 January 2014 - New Scientist
First light-bending calculator designed with metamaterials - physics-math - 09 January 2014 - New Scientist: The metamaterial computer works because light waves can draw mathematical curves in space, akin to a graph. In calculus, differentiation describes the slope of that curve at various points, while integration gives the area under the curve.
The team's metamaterial block can perform these calculations by modifying the light wave's profile. For example, if you shine a light wave describing a parabola (which corresponds to the equation y = x2) into a metamaterial that computes differentiation, it will come out the other side looking like a straight line described by y = 2x.siu
The team's metamaterial block can perform these calculations by modifying the light wave's profile. For example, if you shine a light wave describing a parabola (which corresponds to the equation y = x2) into a metamaterial that computes differentiation, it will come out the other side looking like a straight line described by y = 2x.siu
Friday, October 25, 2013
Material looks cool while heating up | Science News
Material looks cool while heating up | Science News: The compound vanadium dioxide makes such a transition around 70o Celsius, switching abruptly from being an electrical insulator to a conductor...
... the researchers heated the vanadium dioxide-sapphire sample and, with an infrared camera, measured how much infrared light the sample emitted as it warmed. The color gradually shifted from blue to red as the sample's temperature increased from 60o to 74o, as is typical for a warming object. But then something strange happened: Even though the sample’s temperature continued to rise up to 100o, the camera readout returned to an icy blue and stayed there.
... the researchers heated the vanadium dioxide-sapphire sample and, with an infrared camera, measured how much infrared light the sample emitted as it warmed. The color gradually shifted from blue to red as the sample's temperature increased from 60o to 74o, as is typical for a warming object. But then something strange happened: Even though the sample’s temperature continued to rise up to 100o, the camera readout returned to an icy blue and stayed there.
Sunday, October 13, 2013
New material gives visible light an infinite wavelength
New material gives visible light an infinite wavelength: The way light travels through matter is dependent on the material permittivity: the resistance of a material against the electric fields of light waves. Because the permittivity of silver is negative and that of silicon nitride is positive, the combined material has a permittivity which is effectively equal to zero. Therefore, it seems that the light experiences zero resistance, and propagates with an infinite phase velocity. The wavelength of the light is nearly infinite.
Monday, September 30, 2013
World's First Quantum Metamaterial Unveiled | MIT Technology Review
World's First Quantum Metamaterial Unveiled | MIT Technology Review: the split-ring resonators introduced losses because of their internal resistance...
a solution to this problem: use superconducting resonators...
The problem in the past is that physicists had arranged the circuits in series so that the combined state must be a superposition of the states of all the circuits. So if a single circuit was out of kilter, the entire experiment failed.
Macha and co got around this by embedding the quantum circuits inside a microwave resonator–a chamber about a wavelength long in which the microwaves become trapped.
To interact with a photon, each quantum circuit need only couple with the resonator itself and its nearest neighbours.
a solution to this problem: use superconducting resonators...
The problem in the past is that physicists had arranged the circuits in series so that the combined state must be a superposition of the states of all the circuits. So if a single circuit was out of kilter, the entire experiment failed.
Macha and co got around this by embedding the quantum circuits inside a microwave resonator–a chamber about a wavelength long in which the microwaves become trapped.
To interact with a photon, each quantum circuit need only couple with the resonator itself and its nearest neighbours.
Curved Spacetime Mimicked on a Chip: Scientific American
Curved Spacetime Mimicked on a Chip: Scientific American: Liu and his collaborators simulated the gravitational lensing of a star on an integrated photonic chip. A layer of clear plastic on the chip acted as a waveguide, confining light to the chip’s surface. To change the index of refraction of the plastic, the researchers had to vary the plastic’s thickness. They did so by heating the plastic and adding polystyrene microspheres before the plastic cooled. Because the plastic rose upwards around the microspheres on cooling, the thickness of the waveguide increased near these miniature balls. The varying index of refraction the team achieved happens to be very similar to the bending of space-time geometry around a massive star...
“This is indeed the first time an exact solution of Einstein's equations was mimicked” using an optical model, says Leonhardt.
“This is indeed the first time an exact solution of Einstein's equations was mimicked” using an optical model, says Leonhardt.
Tuesday, September 3, 2013
How To 3-D Print Your Own Invisibility Cloak | Popular Science
How To 3-D Print Your Own Invisibility Cloak | Popular Science: Duke University engineer Yaroslav Urzhumov has designed a plastic disk that makes a small object placed in its hollow center invisible to frequencies from 9.7 to 10.1 GHz (close to the range used by radar speed guns). Holes in the doughnut-shaped cloak can eliminate an object’s shadow and decrease its ability to scatter light. In effect, the cloak guides the microwave beams around the object so they can’t bounce back—rendering it invisible.
Subscribe to:
Posts (Atom)