Showing posts with label plasma wakefield accelerator. Show all posts
Showing posts with label plasma wakefield accelerator. Show all posts

Thursday, June 20, 2013

Physicists Build Super-Powerful Tabletop Particle Accelerator | Popular Science

Physicists Build Super-Powerful Tabletop Particle Accelerator | Popular Science: "We have accelerated about half a billion electrons to 2 gigaelectronvolts over a distance of about 1 inch," Mike Downer, professor of physics says in a statement. "Until now that degree of energy and focus has required a conventional accelerator that stretches more than the length of two football fields. It's a downsizing of a factor of approximately 10,000..."

In order to create electrons of the energy level required to produce these X-rays, the team employed laser-plasma acceleration, which involves firing a brief but intensely powerful laser pulse into a puff of gas, using the Texas Petawatt Laser. Though the method was conceived of in the 1970s, a lack of sufficiently powerful lasers to perform it has kept scientists limited at 1 GeV accelerators.

Friday, March 18, 2011

Simulating tomorrow's accelerators at near the speed of light

Simulating tomorrow's accelerators at near the speed of light: A team of researchers led by Jean-Luc Vay of Berkeley Lab’s Accelerator and Fusion Research Division (AFRD) has borrowed a page from Einstein to perfect a revolutionary new method for calculating what happens when a laser pulse plows through a plasma in an accelerator like BELLA. Using their “boosted-frame” method, Vay’s team has achieved full 3-D simulations of a BELLA stage in just a few hours of supercomputer time, calculations that would have been beyond the state of the art just two years ago...
The boosted-frame method, first proposed by Vay in 2007, exploits Einstein’s Theory of Special Relativity to overcome difficulties posed by the huge range of space and time scales in many accelerator systems. Vast discrepancies of scale are what made simulating these systems too costly...
Vay’s team showed that using a particular boosted frame, that of the wakefield itself – in which the laser pulse is almost stationary – realizes near-optimal speedup of the calculation. And it fundamentally modifies the appearance of the laser in the plasma. In the laboratory frame the observer sees many oscillations of the electromagnetic field in the laser pulse; in the frame of the wake, the observer sees just a few at a time.