Showing posts with label catalyst. Show all posts
Showing posts with label catalyst. Show all posts

Friday, January 3, 2014

Supercomputers join search for 'cheapium'

Supercomputers join search for 'cheapium': The identification of the new platinum-group compounds hinges on databases and algorithms that Curtarolo and his group have spent years developing. Using theories about how atoms interact to model chemical structures from the ground up, Curtarolo and his group screened thousands of potential materials for high probabilities of stability. After nearly 40,000 calculations, the results identified 37 new binary alloys in the platinum-group metals, which include osmium, iridium ruthenium, rhodium, platinum and palladium.

These metals are prized for their catalytic properties, resistance to chemical corrosion and performance in high-temperature environments, among other properties.


Tuesday, April 9, 2013

'Artificial leaf' gains the ability to self-heal damage and produce energy from dirty water

'Artificial leaf' gains the ability to self-heal damage and produce energy from dirty water: The device, however, actually is a simple catalyst-coated wafer of silicon, rather than a complicated reproduction of the photosynthesis mechanism in real leaves. Dropped into a jar of water and exposed to sunlight, catalysts in the device break water down into its components, hydrogen and oxygen...


"Self-healing enables the artificial leaf to run on the impure, bacteria-contaminated water found in nature," Nocera said. "We figured out a way to tweak the conditions so that part of the catalyst falls apart, denying bacteria the smooth surface needed to form a biofilm. Then the catalyst can heal and re-assemble."

Monday, October 22, 2012

Artificial Photosynthesis Effort Takes Root

Artificial Photosynthesis Effort Takes Root: To speed up materials discovery, researchers at the Caltech hub, who collaborate with researchers at Lawrence Berkeley National Lab and more than 20 other research centers, have developed an ink-jet printing process that can churn out millions of slightly different variations on promising catalysts. Each sample is as small as a pixel on a screen. They're also developing equipment that can quickly test the activity of each catalyst. "It will dramatically accelerate the rate of electrocatalyst and photocatalyst discovery from a few candidates a year to a few every few milliseconds, producing thousands to millions per day..."


Monday, October 15, 2012

Modern-Day Alchemy Has Iron Working Like Platinum - NYTimes.com

Modern-Day Alchemy Has Iron Working Like Platinum - NYTimes.com: Dr. Chirik’s work involves dissolved catalysts, which are mixed into the end product. The molecules of the catalyst dissipate during the reaction. For instance, a solution containing platinum is used to make silicone emulsifiers, compounds that in turn feed products like makeup, cookware and glue. Tiny amounts of the expensive metal are scattered in all these things; your jeans, for instance, contain unrecoverable particles of platinum...

Dr. Chirik’s chemistry essentially wraps an iron molecule in another, organic molecule called a ligand. The ligand alters the number of electrons available to form bonds. It also serves as a scaffold, giving the molecule shape. “Geometry is really important in chemistry,” Dr. Hartings said. Dr. Chirik’s “ligands help the iron to be in the right geometry to help these reactions along.”