Creating time crystals with a rotating ion ring: The Berkeley team, led by Xiang Zhang and Hartmut Häffner, will attempt to build a time crystal by introducing 100 calcium ions into a 100-micron wide ion trap. The calcium ions will be confined by electric fields to form a crystalline ring, which will then be induced to rotate under the influence of a static magnetic field. According to the group's calculations, this ring should settle into the ground state when the atoms are pre-cooled with lasers to around one-billionth of a degree above absolute zero...
The experimental plan is to properly cool the chamber and then apply the proper magnetic fields. At this point, the ions should begin to cycle around their starting point at regular intervals, forming the repeating lattice of the time crystal. To observe this ion rotation, one of the 100 calcium ions will then be toggled into a new electronic state using a laser. If the scientists observe that ion rotating at steady state, they will have in effect, "broken the translational symmetry of time."
No comments:
Post a Comment