A new topological insulator breaks symmetry, and that's a good thing: Most topological insulators operate as either a p-type or n-type material on both top and bottom surfaces. But BiTeCl is asymmetric: p-type on its top surface and n-type on its bottom. This means the edges of the material could function as p-n junctions – or even many microscopic p-n junctions layered on top of each other. Even better, when the material is placed in a magnetic field, these p-n junctions develop unique edge channels that can conduct electricity with zero resistance, Chen said – and this opens all sorts of possibilities.
Moreover, this unique type of material can demonstrate many other phenomena. For instance, placing it in a static electric field can induce useful magnetic properties in the material, a phenomenon known as the topological magneto-electric effect, first predicted by theorist Shoucheng Zhang of the Stanford Institute for Materials and Energy Sciences and his group. You could even use an electric charge to induce magnetic monopoles – theorized magnets that have just one pole, north or south, rather than the usual two – and then use this exotic magnetic state to do practical work, such as storing information on a hard drive, Chen said. "This is very bizarre," he said, "because people have never found magnetic monopoles as fundamental particles."
No comments:
Post a Comment