Thursday, August 1, 2013

The Hunt for the Magnetic Monopole - IEEE Spectrum

The Hunt for the Magnetic Monopole - IEEE Spectrum: The team proposed looking for these trapped monopoles at temperatures close to absolute zero in spin ice, a peculiar class of materials with ions arranged in four-sided pyramids called tetrahedra. These tetrahedra are stacked together to make a crystal called a pyrochlore.

The atoms at each corner of the pyramids in a pyrochlore are magnetic dipoles. Just like a bar magnet, they have a magnetic field that emerges from one side (what physicists tend to call “north” by convention) and curves around the atom so that it eventually enters the opposite end (“south”)....

When the temperature of the crystalline material is relatively high, the forces that try to align the spins are easily overwhelmed by thermal fluctuations. The spins are oriented at random and can easily change direction. When the material is cooled to just a few degrees above absolute zero, the forces between spins begin to dominate...

In the case where ice rules are obeyed, the two north poles and two south poles cancel each other out. But here’s where it gets interesting: When the ice rules are not obeyed—if, for example, there are three spins pointing inward and one pointing outward—then the three north poles and one south pole in the center will give rise to a single, north magnetic pole.

No comments:

Post a Comment