Physicists freeze motion of light for a minute: To stop the light, the physicists used a glass-like crystal that contains a low concentration of ions – electrically charged atoms – of the element praseodymium. The experimental setup also includes two laser beams. One is part of the deceleration unit, while the other is to be stopped. The first light beam, called the "control beam", changes the optical properties of the crystal: the ions then change the speed of light to a high degree. The second beam, the one to be stopped, now comes into contact with this new medium of crystal and laser light and is slowed down within it. When the physicists switch off the control beam at the same moment that the other beam is within the crystal, the decelerated beam comes to a stop.
More precisely, the light turns into a kind of wave trapped in the crystal lattice. This can be explained in greatly simplified form as follows. The praseodymium ions are orbited by electrons. These behave similarly to a chain of magnets: if you put one into motion, the movement – mediated by magnetic forces – propagates in the chain like a wave. Since physicists call the magnetism of electrons "spin", a "spin wave" forms in the same manner when freezing the laser beam. This is a reflection of the laser's light wave. In this way, the Darmstadt researchers were able to store images, such as a striped pattern, made of laser light within the crystal. The information can be read out again by turning the control laser beam on again.
No comments:
Post a Comment