Tuesday, July 16, 2013

The first electrically powered nanolasers capable of being operated at room temperature

The first electrically powered nanolasers capable of being operated at room temperature: Dr. Ning's latest approach employed the same indium phosphide/indium gallium arsenide/indium phosphide (InP/InGaAs/InP) rectangular core and the same silicon nitride (SiN) insulating layer—encapsulated in a silver shell—used in a previous mockup, which failed due to overheating. When the team refined the fabrication process and adjusted the thickness of the SiN layer, the heat dissipated at a much faster rate—enough to keep the nanolaser in continuous operation.
In an ASU press release, Dr. Ning noted that, "In terms of fundamental science, it shows for the first time that metal heating loss is not an insurmountable barrier for room-temperature operation of a metallic cavity nanolaser under electrical injection; for a long time, many doubted if such operation is even possible at all."


No comments:

Post a Comment