Penetrating the quantum nature of magnetism: he LQM scientists, led by Henrik M. Rønnow, cooled down a copper sulfate crystal close to absolute zero (about 0.01 K) to turn it into a quantum spin liquid and then used inelastic neutron scattering to investigate the motion of electrons' spins. The experiments reveal that the magnetic properties of copper sulfate can no longer be described by the individual behavior of the magnetic moments carried by each individual electron in the sample. Instead, flipping the magnetic moment of one single electron creates two spatially separated quantum objects called spinons.
No comments:
Post a Comment