Cells as living calculators - MIT News Office: MIT engineers have transformed bacterial cells into living calculators that can compute logarithms, divide, and take square roots, using three or fewer genetic parts.
Inspired by how analog electronic circuits function, the researchers created synthetic computation circuits by combining existing genetic “parts,” or engineered genes, in novel ways...
To create an analog adding or multiplying circuit that can calculate the total quantity of two or more compounds in a cell, the researchers combined two circuits, each of which responds to a different input. In one circuit, a sugar called arabinose turns on a transcription factor that activates the gene that codes for green fluorescent protein (GFP). In the second, a signaling molecule known as AHL also turns on a gene that produces GFP. By measuring the total amount of GFP, the total amount of both inputs can be calculated.
To subtract or divide, the researchers swapped one of the activator transcription factors with a repressor, which turns off production of GFP when the input molecule is present. The team also built an analog square root circuit that requires just two parts, while a recently reported digital synthetic circuit for performing square roots had more than 100.
No comments:
Post a Comment