Slowing down microwaves in a chip: The circuit holds a microwave cavity, which looks like a miniature S-shape conductor (see image on right), and a nano-mechanical oscillator (see image below), a tiny vibrating string, which is positioned inside the micro-cavity. A signal that reaches the micro-cavity is reflected around the interior boundaries of the cavity thousands of times. In this way it stays within the device for a short period. The nano-mechanical oscillator allows the cavity to hold the wave even longer. In this way, the two technologies combine to "hold" the wave for several milliseconds...
...More precisely, in practice when a signal arrives in the circuit an additional strong microwave (pump) is used to help to boost the power of the oscillations produced naturally by the nanomechanical oscillator. A reciprocal phenomenon subsequently occurs: the oscillations, which were driven by the microwave, reciprocally provoke a change in the microwave signal itself.
No comments:
Post a Comment