Turning Pull Into Push? - ScienceNOW: To see how this scenario works, consider the case in which just a point charge moves across the surface of an insulator. In that case, the polarization pattern moves with it, becoming so-called evanescent waves that still attract the point charge.
If the point charge moves fast enough, another factor comes into play. In an insulating material such as glass, light travels slower than in empty space. And if a charge moves through the glass faster than light can, it creates a shockwave of light, known as Cherenkov radiation, much like the sonic boom from a supersonic jet. Now, if a point charge above the insulator whizzes along faster than light can within the material, then the induced polarization pattern will move that fast as well and create Cherenkov radiation. That radiation flows at an angle down into the material and carries momentum with it. But by Newton's law that every action has an equal and opposite reaction, the downward flow of momentum must be balanced by an upward push on the point charge.
No comments:
Post a Comment