Is Dark Matter a Glimpse of a Deeper Level of Reality?: Black holes provide the strongest argument for this point of view. The laws of gravity predict that these cosmic vacuum cleaners obey versions of the laws of thermodynamics, which is strange, because thermodynamics is the branch of physics that describes composite systems, such as gases made up of molecules. A black hole sure doesn’t look like a composite system. It just looks like a warped region of space that you would do well to stay away from. For it to be composite, space itself must be.
In that case, black holes represent a new phase of matter. Outside the hole, the universe’s “degrees of freedom”—all that its most fundamental building blocks are capable of—are in a low-energy state, forming what you might think of as a crystal, with a fixed, regular arrangement we perceive as the spacetime continuum. But inside the hole, conditions become so extreme that the continuum breaks apart. “You can make spacetime melt,” Verlinde told me. “This is really where spacetime ends. To understand what goes on, you need to use these underlying degrees of freedom.” Those degrees of freedom cannot be thought of as existing in one place or another. They transcend space. Their true venue is a ginormous abstract realm of possibilities—in the jargon, a “phase space” commensurate with their almost unimaginably rich repertoire of behaviors.
No comments:
Post a Comment