Friday, May 18, 2012

Iron-based superconductors exhibit s-wave symmetry

Iron-based superconductors exhibit s-wave symmetry: In conventional superconductors, the Cooper pairs have s-wave pairing symmetry, which takes the shape of a sphere. In contrast, Cooper pairs in the cuprate family of high-temperature superconductors exhibit d-wave pairing symmetry, which looks a bit like a four-leaf clover. The leaves, or lobes, are areas where the superconducting gap is finite. At the points where two leaves join, known as nodes, the superconducting gap goes to zero.
However, iron-based superconductors do not fall nicely into either of these two categories...

They discovered a signature that could not have originated from a d-wave pairing – a striking difference from the cuprate family.
This finding, the first measurement of its kind, provides solid experimental evidence that iron-based superconductors fall into the regime of s-wave pairing symmetry seen in conventional superconductors, and suggests that both nodal and nodeless gaps could arise from the same mechanism. This could lead to a unified theoretical framework for both phenomena, making the research an important step toward unveiling the mechanism of iron-based superconductivity.

No comments:

Post a Comment