Thursday, May 3, 2012

Atomic-scale visualization of electron pairing in iron superconductors

Atomic-scale visualization of electron pairing in iron superconductors: Two scientists working with Davis, Milan P. Allan of Brookhaven, Cornell, and the University of Saint Andrews (where Davis also teaches) and Andreas W. Rost of Cornell and St. Andrews - the lead authors on the paper - figured out how to do the experiments and identified an iron-based material (lithium iron arsenide) in which to test the predictions.
Their method, multi-band Bogoliubov quasiparticle scattering interference, found the "signature" predicted by the theorists:
"The strength of the 'glue' holding the pairs together is different on the different bands, and on each band it depends on the direction that the electrons are traveling - with the pairing usually being stronger in a given direction than at 45° to that direction," Davis said.
"This is the first experimental evidence direct from the electronic structure in support of the theories that the mechanism for superconductivity in iron-based superconductors is due primarily to magnetic interactions," he said.

No comments:

Post a Comment