Wednesday, April 13, 2011

'Giant Proximity Effect' enhances high-temperature superconductivity

'Giant Proximity Effect' enhances high-temperature superconductivity: o explore the Giant Proximity Effect, Bozovic and his team engineered complex cuprates using a process called molecular beam epitaxy. They synthesized samples of thin films containing layers of lanthanum-cuprate superconductors doped with strontium to various levels, to create a series with varying transition temperatures. The Brookhaven samples were studied at PSI using a unique technique called low-energy muon spin rotation to detect superconductivity in each sample’s outer and inner layers.
By mapping the magnetic fields for each structure, the scientists observed the Giant Proximity Effect and found that a thick barrier of superconductor with a Tc of 5 Kelvin could transmit supercurrent at a temperature four times higher, if it is sandwiched between two superconductors with a Tc of 40 Kelvin. Their results also proved that the entire barrier layer is affected by the Giant Proximity Effect.

No comments:

Post a Comment