The researchers built on Maldacena’s mapping and devised a model for electrons moving in a curved space-time in the presence of a charged black hole that captures two of the striking features of the normal state of high-temperature superconductors: 1) the presence of a barrier for electron motion in the Mott state, and 2) the strange metal regime in which the electrical resistivity scales as a linear function of temperature, as opposed to the quadratic dependence exhibited by standard metals.
Thursday, March 3, 2011
Black holes: a model for superconductors? | Engineering at Illinois
Black holes: a model for superconductors? | Engineering at Illinois: Since most condensed matter phenomena involve electron physics, Leigh, along with graduate student Juan Jottar, set out to investigate the sorts of interactions that electrons might have in classical gravity theories that arise in string theory. Since the Mott problem is an example of strongly interacting particles, Edalati, Leigh, and Philips then asked the question: “Is it possible to devise a theory of gravity that mimics a Mott insulator?” Indeed it is.
The researchers built on Maldacena’s mapping and devised a model for electrons moving in a curved space-time in the presence of a charged black hole that captures two of the striking features of the normal state of high-temperature superconductors: 1) the presence of a barrier for electron motion in the Mott state, and 2) the strange metal regime in which the electrical resistivity scales as a linear function of temperature, as opposed to the quadratic dependence exhibited by standard metals.
The researchers built on Maldacena’s mapping and devised a model for electrons moving in a curved space-time in the presence of a charged black hole that captures two of the striking features of the normal state of high-temperature superconductors: 1) the presence of a barrier for electron motion in the Mott state, and 2) the strange metal regime in which the electrical resistivity scales as a linear function of temperature, as opposed to the quadratic dependence exhibited by standard metals.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment