Robots learn human perception: Black's medical colleagues in the US planted tiny electrodes in the brains of paraplegic patients in the areas of the brain responsible for movement – the motor cortex. They then analysed the stimulation of the nerve cells. Nerve cells send out extremely fine electrical impulses when they are stimulated, and the electrodes detect these extremely fine electric shocks. Such electrical stimulation initially does not look much different to a noisy television screen. Black has succeeded in identifying and interpreting clear activation samples from this flickering. Thanks to his mathematical procedure, the computer was able to translate the thoughts of the patients into real movements: simply through the power of thought, the patients could move the cursor on a computer monitor. These links between the brain and computer are called brain-computer interfaces by experts.
Black has analysed the activity sample from the motor cortex and hopes to be able to draw conclusions for the programming of computers. Particularly interesting is that the motor cortex of a human being also becomes active if the person only observes movement, even if the body itself is completely motionless. "Apparently, there is a relationship between a person's knowledge of movement and the person's observation of movement," says Black.
No comments:
Post a Comment