Monday, February 21, 2011

The Memristor � American Scientist

The Memristor � American Scientist
The favored layout for memristor memory is a crossbar structure, where perpendicular rows and columns of fine metal conductors are separated by a thin, partially doped layer of TiO2. In this way a memristor is formed at every point where a column crosses a row. Each bit in the memory is individually addressable by selecting the correct combination of column and row conductors. A signal pulse applied to these conductors can write information by setting the resistive state of the TiO2 junction. A later pulse on the same pair of conductors reads the recorded information by measuring the resistance...

One intriguing way to exploit analog memristors would be to build a machine modeled on the nervous system. In biological neural networks, each nerve cell communicates with other cells through thousands of synapses; adjustments to the strength of the synaptic connections is thought to be one mechanism of learning. In an artificial neural network, synapses must be small, simple structures if they are to be provided in realistic numbers. The memristor meets those requirements. Moreover, its native mode of operation—changing its resistance in response to the currents that flow through it—suggests a direct way of modeling the adjustment of synaptic strength.

No comments:

Post a Comment