Under such conditions, iron exists, for example, as the Fe14+ ion, ionised fourteen times as it were. The experiment proceeds as follows: A cloud of these ions, only a few centimetres long and thin as a hair, is kept suspended in an ultra-high vacuum with the help of magnetic and electric fields. X-rays from the synchrotron then impact on this cloud; the photon energy of the X-rays is selected by a "monochromator" with extreme precision and directed onto the ions as a thin, focused beam.
Thursday, November 4, 2010
Physicists produce black hole plasma in the lab
Physicists produce black hole plasma in the lab: It is precisely this process, the stripping of further electrons from highly charged ions by incident X-rays, which researchers at the Max Planck Institute for Nuclear Physics have reproduced in the laboratory in collaboration with colleagues at BESSY II - the Berlin synchrotron X-ray source. The heart of the experiment was the EBIT electron beam ion trap designed at the Max-Planck institute. Inside the trap, iron atoms were heated up with the aid of an intense electron beam as they would be deep inside the sun or, as in this case, in the vicinity of a black hole.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment