Monday, October 4, 2010

Smarter Than You Think - Aiming to Learn as We Do, A Machine Teaches Itself - NYTimes.com

Smarter Than You Think - Aiming to Learn as We Do, A Machine Teaches Itself - NYTimes.com: The Never-Ending Language Learning system, or NELL, has made an impressive showing so far. NELL scans hundreds of millions of Web pages for text patterns that it uses to learn facts, 390,000 to date, with an estimated accuracy of 87 percent. These facts are grouped into semantic categories — cities, companies, sports teams, actors, universities, plants and 274 others. The category facts are things like “San Francisco is a city” and “sunflower is a plant.”

NELL also learns facts that are relations between members of two categories. For example, Peyton Manning is a football player (category). The Indianapolis Colts is a football team (category). By scanning text patterns, NELL can infer with a high probability that Peyton Manning plays for the Indianapolis Colts — even if it has never read that Mr. Manning plays for the Colts. “Plays for” is a relation, and there are 280 kinds of relations. The number of categories and relations has more than doubled since earlier this year, and will steadily expand...

Still, artificial intelligence experts agree that the Carnegie Mellon approach is innovative. Many semantic learning systems, they note, are more passive learners, largely hand-crafted by human programmers, while NELL is highly automated. “What’s exciting and significant about it is the continuous learning, as if NELL is exercising curiosity on its own, with little human help”

No comments:

Post a Comment