Tuesday, September 21, 2010

Animal cells communicate electrically over long distances via nanotubes

Animal cells communicate electrically over long distances via nanotubes: Researchers based at the Department of Biomedicine of the University of Bergen in Norway demonstrated a two-way exchange of electrical signals between cells connected by nanotubes 10 to 70 μm long in a normal rat kidney. They also demonstrated electrical coupling in other types of cells, which suggests electrical coupling via TNTs may be a much more common phenomenon in animal cells than previously thought.
The study found the strength of electrical coupling depended on the length and number of TNT connections, and the coupling was voltage-sensitive. Electrical coupling was inhibited by the presence of a known gap-junction blocker, meclofenamic acid, and was not present in cell types that lacked gap junctions. Gap junctions are proteins that form a porous junction between adjacent cells, and the study clearly demonstrated that a current flows down the nanotube and causes ion channels to open in the connecting cell’s membrane, as long as a gap junction is present.

No comments:

Post a Comment