The physicists were specifically interested in what happens to a light pulse as it travels through the array at different velocities in the presence of a defect. If the light is scattered by the defect, it means dissipative processes have occurred. If the light pulse moves through the defect without changing its shape (i.e., without losing collectivity), there is no dissipation and the light has superfluid motion. Through their calculations, the physicists showed that, for certain low velocities, the transverse motion of light is superfluid with zero dissipation. When the velocity increases, dissipative processes occur that destroy the collectivity of the light's oscillations, and superfluidity breaks down.
No comments:
Post a Comment